NZ Government GNSS CORS

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

8526
200
Updated
22 Aug 2019

This dataset was last updated on LINZ Data Service on 22 Aug 2019.

The NZGD2000 Government CORS provides the locations of GNSS Continuously Operating Reference Stations operated by GNS Science under the GeoNet project (www.geonet.org.nz). Coordinates are from the LINZ Geodetic Database, in NZGD2000.

These are split into several different networks:

  • PositioNZ - stations predominantly funded by LINZ, with some GeoNet funding. These provide a nationwide coverage of ~120km spacing. More info here
  • GeoNet - stations funded by the GeoNet project. These are located in areas of geophysical interest, usually on the East Coast of the North Island. More info here
  • SAGENZ - stations funded by the University of Otago, GNS Science, MIT, University of Colorado and UNAVCO. These Southern Alps Geodetic Experiment - New Zealand stations are generally semi-continuous sites.
  • Tide Gauge - stations co-located with tide gauges at major ports. Data is managed through the GeoNet project also.

30" RINEX data from all of these sites is available from the GeoNet website

Real Time data is available from all PositioNZ stations, and some GeoNet stations. For more information, see the PositioNZ-RT website

Layer ID 51029
Data type Vector point
Feature count 196
Primary key nod_id
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

NZ Airborne Gravity Free-Air Anomalies at Ground Surface (2013-2014)

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

1009
46
Updated
30 Jan 2017

This dataset was last updated on LINZ Data Service on 30 Jan 2017.

Introduction
This dataset provides a 1 arc minute raster image of the free-air gravity anomalies, which have been downward continued to the ground surface (McCubbine et al, 2017).

Description
Gravity anomalies are differences between measured gravity (from the airborne gravity dataset) and an ellipsoidal model of the Earth’s gravity field (GRS80). Gravity anomalies correspond to un-modelled density variations within the Earth’s crust and upper mantle. They are used to investigate concealed geological structures and for quasigeoid modelling.

These free-air anomalies show values which include gravitation impact of the topography.

The national airborne gravity dataset is comprised of more than 50,000 linear km of flight observations, covering the three main islands of New Zealand and up to 10km offshore.

As the airborne gravity dataset was measured at flight altitude, the observations have been reduced to the ground surface (a process known as downward continuation).

The national airborne gravity dataset was collected as a joint project between Land Information New Zealand (LINZ), GNS Science (GNS) and Victoria University of Wellington (VUW). The airborne survey was completed in a total of eight months, over two campaigns: August – October 2013, and February – June 2014.

Users may also be interested other layers created for Bouguer anomalies at ground surface and the along track observations from the gravity flight lines at flight elevation NZ Airborne Gravity Bouguer Anomalies at Ground Surface (2013-2014) and NZ Airborne Gravity Flight Lines at Elevation (2013-2014).

McCubbine, J. Stagpoole, V. Caratori-Tontini, F. Amos, M. Smith, E. and Winefield, R. (2017). Gravity anomaly grids for the New Zealand region. Manuscript submitted for publication New Zealand Journal of Geology and Geophysics.

Layer ID 53532
Data type Grid
Resolution About 1579.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

NZ Airborne Gravity Flight Lines at Elevation (2013-2014)

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3468
49
Updated
30 Jan 2017

This dataset was last updated on LINZ Data Service on 30 Jan 2017.

Introduction
This dataset provides gravity observations, reductions and metadata for New Zealand’s national airborne gravity survey at flight elevation. A full description of each field in this dataset is available in the accompanying pdf NZ Airborne Gravity Flight Lines at Elevation (2013-2014) Description.

Description
New Zealand’s national airborne gravity dataset is comprised of more than 50,000 linear km of flight observations, covering the three main islands of New Zealand and up to 10km offshore.

Gravity observations can be used to compute gravity anomalies: differences between measured gravity and an ellipsoidal model of the Earth’s gravity field. Gravity anomalies correspond to un-modelled density variations within the Earth’s crust and upper mantle. They are used to investigate concealed geological structures and for quasigeoid modelling.

The national airborne gravity dataset was collected as a joint project between Land Information New Zealand (LINZ), GNS Science (GNS) and Victoria University of Wellington (VUW). The airborne survey was completed in a total of eight months, over two campaigns: August – October 2013, and February – June 2014.

Users may also be interested raster layers created for each of the free-Air and Bouguer Anomalies which have been downward continued to ground surface NZ Airborne Gravity Free-Air Anomalies at Ground Surface (2013-2014) and NZ Airborne Gravity Bouguer Anomalies at Ground Surface (2013-2014).

Layer ID 53531
Data type Vector point
Feature count 947685
Elevation Z (Ellipsoidal_Height)
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

NZ Airborne Gravity Bouguer Anomalies at Ground Surface (2013-2014)

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3077
100
Updated
30 Jan 2017

This dataset was last updated on LINZ Data Service on 30 Jan 2017.

The national airborne gravity dataset is comprised of more than 50,000 linear km of flight observations, covering the three main islands of New Zealand and up to 10km offshore.

This dataset provides a 1 arc minute raster image of the Bouguer anomalies, which have been downward continued to the ground surface (McCubbine et al, 2017).

The national airborne gravity dataset was collected as a joint project between Land Information New Zealand (LINZ), GNS Science (GNS) and Victoria University of Wellington (VUW). The airborne survey was completed in a total of eight months, over two campaigns: August – October 2013, and February – June 2014.

Users may also be interested in other layers created for the free-air anomalies at ground surface and the along track observations from the gravity flight lines at flight elevation NZ Airborne Gravity Free-Air Anomalies at Ground Surface (2013-2014) and NZ Airborne Gravity Flight Lines at Elevation (2013-2014).

McCubbine, J. Stagpoole, V. Caratori-Tontini, F. Amos, M. Smith, E. and Winefield, R. (2017). Gravity anomaly grids for the New Zealand region. Manuscript submitted for publication New ZealandJournal of Geology and Geophysics.

Layer ID 53530
Data type Grid
Resolution About 1579.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

NZ Kaikoura Earthquake (14 Nov 2016) Geodetic Marks

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4844
116
Updated
25 Jan 2017

This dataset was last updated on LINZ Data Service on 25 Jan 2017.

For further information about this dataset, see the Kaikoura earthquake information.

It is likely that many of these coordinates will be updated multiple times as marks move due to aftershocks and ongoing post-seismic deformation. It is therefore critical that the datum version and coordinate epoch date are recorded with any coordinates sourced from this dataset, along with the date the coordinates were accessed or downloaded.

These coordinates are computed from Continuously Operating Reference Station (CORS) data and geodetic surveys undertaken after the 14 November 2016 Kaikoura earthquake. They reflect earthquake movements up until the epoch date that is associated with each coordinate. Where possible, coordinates sourced from this dataset for use as control or calibration points in a project should be at the same or similar epochs. If not, post-seismic deformation may mean that new observations or coordinates do not fit well with these coordinates. Coordinates used as control or calibration points should also be well-distributed over the project area, so that any discrepancies resulting from the survey date being significantly different from the coordinate epoch date can be identified. If such discrepancies are identified, it may be necessary to use the LINZ PositioNZ-PP online processing service to generate control coordinates at the same (or nearly the same) epoch as the survey date.

Coordinates were calculated using SNAP v2.5.48. The origin of non-CORS coordinates is PositioNZ CORS that have been updated to include earthquake movements.

The 95% confidence interval uncertainties of coordinates are 0.02m horizontally and 0.03m vertically, relative to the PositioNZ network, at the epoch specified. In areas experiencing significant ongoing seismic activity, coordinates at the same mark at other epochs may differ by more than these uncertainties.

These coordinates are suitable for use in surveys and other geospatial positioning activities in the area impacted by the Kaikoura earthquake.

Layer ID 53527
Data type Vector point
Feature count 158
Primary key nod_id
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Moturiki 1953 to NZVD2016 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4200
93
Added
04 Aug 2016

This dataset was first added to LINZ Data Service on 04 Aug 2016.

The MOT53-NZVD2016 grid enables the conversion of normal-orthometric heights from the Moturiki 1953 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016).

The conversion value is represented by the attribute “O”, in metres.

This conversion and NZVD2016 are formally defined in the LINZ standard LINZS25009.

MOT53-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Moturiki 1953 vertical datum (174.5° E to 178.26° E, 36.5° S to 40.7° S).

The height conversion grid models the difference between the Moturiki 1953 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of MOT53-NZVD2016 is better than 2 centimetres (95% Confidence interval).

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53448
Data type Vector point
Feature count 14364
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Wellington 1953 to NZVD2016 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3220
61
Updated
03 Aug 2016

This dataset was last updated on LINZ Data Service on 03 Aug 2016.

The WGN53-NZVD2016 grid enables the conversion of normal-orthometric heights from the Wellington 1953 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016).

The conversion value is represented by the attribute “O”, in metres.

This conversion and NZVD2016 are formally defined in the LINZ standard LINZS25009.

WGN53-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Wellington 1953 vertical datum (174.4° E to 176.4° E, 39.1° S to 41.6° S).

The height conversion grid models the difference between the Wellington 1953 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of WGN53-NZVD2016 is better than 2 centimetres (95% Confidence interval).

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53446
Data type Vector point
Feature count 4636
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Wellington 1953 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3247
43
Updated
09 Aug 2016

This dataset was last updated on LINZ Data Service on 09 Aug 2016.

The WGN53-NZGD2000 grid enables the conversion of normal-orthometric heights from the Wellington 1953local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

WGN53-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Wellington 1953 vertical datum (174.4° E to 176.4° E, 39.1° S to 41.6° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the WGN53-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the WGN53-NZVD2016 grid models the difference between the Wellington 1953 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53445
Data type Vector point
Feature count 18271
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Taranaki 1970 to NZVD2016 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

3140
26
Updated
03 Aug 2016

This dataset was last updated on LINZ Data Service on 03 Aug 2016.

The TNK70-NZVD2016 grid enables the conversion of normal-orthometric heights from the Taranaki 1970 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016).

The conversion value is represented by the attribute “O”, in metres.

This conversion and NZVD2016 are formally defined in the LINZ standard LINZS25009.

TNK70-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Taranaki 1970 vertical datum (173.6° E to 176.4° E, 38.3° S to 41.1° S).

The height conversion grid models the difference between the Taranaki 1970 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of TNK70-NZVD2016 is better than 2 centimetres (95% Confidence interval).

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53444
Data type Vector point
Feature count 7225
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Taranaki 1970 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

974
19
Updated
09 Aug 2016

This dataset was last updated on LINZ Data Service on 09 Aug 2016.

The TNK70-NZGD2000 grid enables the conversion of normal-orthometric heights from the Taranaki 1970 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

TNK70-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Taranaki 1970 vertical datum (173.6° E to 176.4° E, 38.3° S to 41.1° S).
The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the TNK70-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the TNK70-NZVD2016 grid models the difference between the Taranaki 1970 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53443
Data type Vector point
Feature count 28561
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 21 to 30 of 63