Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was last updated on LINZ Data Service on 08 Dec 2022.
Taranaki LiDAR Index Tiles (2021)
Toitū Te Whenua Land Information New Zealand
2021-04-03
This layer contains the index tiles for LiDAR data of the Taranaki Region, including New Plymouth, Stratford, and the surrounding area, captured between 3 April to 16 October 2021.
- The DEM is available as layer [Taranaki LiDAR 1m DEM (2021)](https://data.linz.govt.nz/layer/107436).
- The DSM is available as layer [Taranaki LiDAR 1m DSM (2021)](https://data.linz.govt.nz/layer/107437).
- The LAS point cloud and vendor project reports are available from [OpenTopography](https://portal.opentopography.org/datasets?search=new%20zealand).
LiDAR was captured for Taranaki Regional Council by AAM Ltd on 3 April to the 16 October 2021. The datasets were generated by AAM and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
Data comprises:
- DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
- DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
- Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 8 pulses/square metre for urban areas and 4 pulses/square metre for the rest of the dataset.
Vertical Accuracy Specification is +/- 0.2m (95%)
Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
Data Acquisition:
Airborne Laser Scanner (ALS) data was acquired from a fixed wing aircraft from 3 April to 16 October 2021, using AAM's Optech Galaxy Prime 473 LiDAR system.
Survey Specification:
Scanner: Optech Galaxy Prime 473
Flying Height: between 1080 - 1760 m AGL
Scan Angle: between ±19.0 - ±27.5 degrees
Scan Frequency: 66 Hz
Pulse Rate: between 400 - 650 kHz
Swath Overlap: between 25 - 30%
Swath Points Per M2: 8 in urban centres and 4 across the rest of the dataset.
Data Processing:
RTX processing was utilised to calculate the GPS trajectory. Trimble CenterPoint® RTX™ is a proprietary GPS, GLONASS, BeiDou, and QZSS enabled technology that provides high-accuracy GNSS positioning worldwide without the use of traditional local base stations or a VRS network. By combining real time data from a global reference station infrastructure with innovative positioning and compression algorithms, Trimble RTX technology computes centimeter-level positions based on satellite orbit and clock information. Trajectory processing provides the accurate position and orientation of the sensor, essential for georeferencing the dataset.
All initial processing was undertaken in UTM60S/ITRF2008. Reprojection and application of the
NZGD2000 deformation model converted the data to NZTM/NZGD2000 using concord software. To convert the point cloud heights from ellipsoidal to NZVD2016 heights, a geoid adjustment was performed using the NZGeoid2016 separation model.
AAM uses proprietary automated ground classification routines, based upon algorithms tailored for major terrain/vegetation combinations, to initially classify the laser strikes into ground / non-ground classification and to generate an accurate ground surface. The ground classification is then manually reviewed and edited to reach ICSM level 2 standards. Following this process, non-ground classes are then classified using automated routines and macros. Water was also manually reviewed to ensure correct presentation in the downstream elevation products (DEM and DSM). The definition of the ground points may be less accuracte under vegetation.
Classification of the point cloud follows the classification scheme below:
1 - Unclassified
2 - Ground
3 - Low Vegetation
4 - Medium Vegetation
5 - High Vegetation
6 - Buildings
7 - Low Noise
9 - Water
18 - High Noise
WSP NZ Ltd undertook a field survey to acquire ground test points, assumed to be error-free, to validate the accuracy of the LiDAR data and derivative products. The test points were uniformly distributed across the area and located on clear ground. Comparison of the field test points with elevations interpolated from measured data, yielded the following accuracy assessment for New Plymouth, Northeast, West, and Southeast blocks respectively:
Test point sites: 8, 10, 51, 19
No. points: 373, 375, 2100, 700
Mean difference: 0.001 m, 0.000 m, -0.002 m, 0.003 m
St. Deviation: 0.028 m, 0.035 m, 0.032 m, 0.039 m
Standard Error (RMS): 0.028 m, 0.035 m, 0.032 m, 0.078 m
The mean elevation difference was removed from the supplied data.
The DEM was generated from the ground and water points using a standard linear interpolation with LASTools software. Rivers and lakes were hydroflattened with breaklines that were drawn manually and the coastline was clipped to a polygon that was derived from the water points boundary, to give a clean presentation along the coast.
The DSM was generated using first return ground and non ground classes, excluding high and low noise.
The deliverables to LINZ were:
1m gridded bare earth digital elevation model (DEM)
1m gridded digital surface model (DSM)
Classified point cloud
All product deliverables supplied in terms of NZTM map projection and NZVD2016 vertical datum.
vector
eng
New Zealand
elevation