Creative Commons Attribution 4.0 International
You may use this work for commercial purposes.
You must attribute the creator in your own works.
This dataset was last updated on LINZ Data Service on 02 May 2023.
Southland LiDAR 1m DSM (2020-2021)
Toitū Te Whenua Land Information New Zealand
2020-12-15
This layer contains the DSM for LiDAR data in the Southland Region, captured between 15 December 2020 to 4 November 2021.
- The DEM is available as layer [Southland LiDAR 1m DEM (2020-2021)](https://data.linz.govt.nz/layer/113172)
- The index tiles are available as layer [Southland LiDAR Index Tiles (2020-2021)](https://data.linz.govt.nz/layer/113174)
- The LAS point cloud and vendor project reports are available from [OpenTopography](https://portal.opentopography.org/datasets?loc=New%20Zealand)
LiDAR was captured for Environment Southland by Aerial Surveys Ltd between 15 December 2020 and 4 November 2021. These datasets were generated by Aerial Surveys and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
Data comprises:
- DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
- DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
- Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 4 pulses/square metre.
Vertical Accuracy Specification is +/- 0.2m (95%)
Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
Data Acquisition:
Airborne Laser Scanner (ALS) data was acquired from a fixed wing aircraft on 15 December 2020 to 4 November 2021 using Aerial Surveys Optech Orion Galaxy Prime LiDAR system.
Survey Specification:
Scanner: Optech Galaxy Prime
Flying Height: 2925 m AGL
Scan Angle: 52 degrees
Scan Frequency: 65 Hz
Pulse Rate: 400kHz
Swath Overlap: 55%
Swath Points Per M2: 4
Data Processing:
The LiDAR sensor positioning and orientation (POS) was determined using the collected GPS/IMU datasets and Applanix POSPac software.
Base Station Positions: PPRTX
The POS data was combined with the LiDAR range files and used to generate LIDAR point clouds in NZTM and ellipsoidal heights. This process was undertaken using Optech LMS LiDAR processing software. The data was checked for completeness of coverage. The relative fit of data in the overlap between strips was also checked.
The height accuracy of the ground classified LiDAR points was checked using open land-cover survey check site data collected by Sounds Surveying Ltd. This was done by calculating height differences statistics between a TIN of the LiDAR ground points and the checkpoints. The standard deviation statistic is 0.02m; a RMS of0.02m and the average difference is 0m. LiDAR is relative to the control check points.
The positional accuracy of the LiDAR data has been checked by overlaying Sounds Surveying Ltdsurveyed data over the LiDAR data displayed coded by intensity. The data was found to fit well in position.
The point cloud data was then classified with TerraSolid LiDAR processing software into ground and above ground returns using a sparse triangular irregular network (TIN) from the supplied LiDAR points and then classified according to required classes by using automatic iterative process followed by manual correction.Terrascan’s inbuilt macros with different parameters were used to classify low points, ground points, buildings, temporary features and finally vegetation.
All product deliverables supplied in terms of NZTM map projection and NZVD2016 vertical datum.
Classification of the point cloud follows the classification scheme below:
1 - Unclassified
2 - Ground
3 - Low Vegetation
4 - Medium Vegetation
5 - High Vegetation
6 - Buildings
7 - Low Noise
9 - Water
18 - High Noise
The Digital Elevation (DEM) was derived using a point to TIN and TIN to Raster process, using a Natural Neighbour interpolation. Hydro flattening was performed as per part 7 of PGF version New Zealand National Aerial Lidar Base Specification Jan 2020.
The deliverables to LINZ were:
1m gridded bare earth digital elevation model (DEM)
1m gridded digital surface model (DSM)
Classified point cloud
-46.67932702485258 168.4906097365028 -45.939585958189355 169.28235796009238
https://data.linz.govt.nz/layer/113173-southland-lidar-1m-dsm-2020-2021/
grid
eng
New Zealand
elevation