Dunedin 1958 to NZVD2016 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5802
50
Updated
03 Aug 2016

This dataset was last updated on LINZ Data Service on 03 Aug 2016.

The DUN58-NZVD2016 grid enables the conversion of normal-orthometric heights from the Dunedin 1958 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016).

The conversion value is represented by the attribute “O”, in metres.

This conversion and NZVD2016 are formally defined in the LINZ standard LINZS25009.

DUN58-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Dunedin 1958 vertical datum (168.4° E to 171.3° E, 43.9° S to 46.5° S).

The height conversion grid models the difference between the Dunedin 1958 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of DUN58-NZVD2016 is better than 2 centimetres (95% Confidence interval).

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53428
Data type Vector point
Feature count 6952
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Gisborne 1926 to NZVD2016 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5757
26
Updated
03 Aug 2016

This dataset was last updated on LINZ Data Service on 03 Aug 2016.

The GSB26-NZVD2016 grid enables the conversion of normal-orthometric heights from the Gisborne 1926 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016).

The conversion value is represented by the attribute “O”, in metres.

This conversion and NZVD2016 are formally defined in the LINZ standard LINZS25009.

GSB26-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Gisborne 1926 vertical datum (177.0° E to 178.6° E, 37.4° S to 39.0° S).

The height conversion grid models the difference between the Gisborne 1926 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of GSB26-NZVD2016 is better than 2 centimetres (95% Confidence interval).

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53430
Data type Vector point
Feature count 2401
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Gisborne 1926 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5691
21
Updated
02 Aug 2016

This dataset was last updated on LINZ Data Service on 02 Aug 2016.

The GSB26-NZGD2000 grid enables the conversion of normal-orthometric heights from the Gisborne 1926 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

GSB26-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Gisborne 1926 vertical datum (177.0° E to 178.6° E, 37.4° S to 39.0° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the GSB26-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the GSB26-NZVD2016 grid models the difference between the Gisborne 1926 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53429
Data type Vector point
Feature count 9409
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

One Tree Point 1964 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5654
37
Updated
09 Aug 2016

This dataset was last updated on LINZ Data Service on 09 Aug 2016.

The OTP64-NZGD2000 grid enables the conversion of normal-orthometric heights from the One Tree Point 1964 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

OTP64-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the One Tree Point 1964 vertical datum (172.6° E to 175.0° E, 34.3° S to 36.8° S).
The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the OTP64-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the OTP64-NZVD2016 grid models the difference between the One Tree Point 1964 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53439
Data type Vector point
Feature count 21895
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Napier 1962 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5540
22
Updated
09 Aug 2016

This dataset was last updated on LINZ Data Service on 09 Aug 2016.

The NPR62-NZGD2000 grid enables the conversion of normal-orthometric heights from the Napier 162 ocal vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

NPR62-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Napier 1962 vertical datum (175.6° E to 177.9° E, 38.6° S to 40.6° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the NPR62-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the NPR62-NZVD2016 grid models the difference between the Napier 1962 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53435
Data type Vector point
Feature count 16819
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Dunedin-Bluff 1960 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5525
15
Updated
02 Aug 2016

This dataset was last updated on LINZ Data Service on 02 Aug 2016.

The DBL60-NZGD2000 grid enables the conversion of normal-orthometric heights from the Dunedin-Bluff 1960 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

DBL60-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Dunedin-Bluff 1960 vertical datum (167.4° E to 169.9° E, 45.0° S to 46.7° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the DBL60-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the DBL60-NZVD2016 grid models the difference between the Dunedin-Bluff 1960 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53425
Data type Vector point
Feature count 15553
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Bluff 1955 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5482
15
Updated
02 Aug 2016

This dataset was last updated on LINZ Data Service on 02 Aug 2016.

The BLF55-NZGD2000 grid enables the conversion of normal-orthometric heights from the Bluff 1955 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

BLF55-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Bluff 1955 vertical datum (168.2° E to 168.9° E, 46.3° S to 46.8° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the BLF55-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the BLF55-NZVD2016 grid models the difference between the Bluff 1955 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53423
Data type Vector point
Feature count 1333
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

NZ Airborne Gravity Bouguer Anomalies at Ground Surface (2013-2014)

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

5112
124
Updated
30 Jan 2017

This dataset was last updated on LINZ Data Service on 30 Jan 2017.

The national airborne gravity dataset is comprised of more than 50,000 linear km of flight observations, covering the three main islands of New Zealand and up to 10km offshore.

This dataset provides a 1 arc minute raster image of the Bouguer anomalies, which have been downward continued to the ground surface (McCubbine et al, 2017).

The national airborne gravity dataset was collected as a joint project between Land Information New Zealand (LINZ), GNS Science (GNS) and Victoria University of Wellington (VUW). The airborne survey was completed in a total of eight months, over two campaigns: August – October 2013, and February – June 2014.

Users may also be interested in other layers created for the free-air anomalies at ground surface and the along track observations from the gravity flight lines at flight elevation NZ Airborne Gravity Free-Air Anomalies at Ground Surface (2013-2014) and NZ Airborne Gravity Flight Lines at Elevation (2013-2014).

McCubbine, J. Stagpoole, V. Caratori-Tontini, F. Amos, M. Smith, E. and Winefield, R. (2017). Gravity anomaly grids for the New Zealand region. Manuscript submitted for publication New ZealandJournal of Geology and Geophysics.

Layer ID 53530
Data type Grid
Resolution About 1579.000m
Services Raster Query API, Catalog Service (CS-W), data.govt.nz Atom Feed

Moturiki 1953 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4723
58
Updated
02 Aug 2016

This dataset was last updated on LINZ Data Service on 02 Aug 2016.

The MOT53-NZGD2000 grid enables the conversion of normal-orthometric heights from the Moturiki 1953 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

MOT53-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Moturiki 1953 vertical datum (174.5° E to 178.26° E, 36.5° S to 40.7° S).

The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the MOT53-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the MOT53-NZVD2016 grid models the difference between the Moturiki 1953 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53433
Data type Vector point
Feature count 57937
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed

Taranaki 1970 to NZGD2000 Conversion

Licence

Creative Commons Attribution 4.0 International

You may use this work for commercial purposes.

You must attribute the creator in your own works.

4543
25
Updated
09 Aug 2016

This dataset was last updated on LINZ Data Service on 09 Aug 2016.

The TNK70-NZGD2000 grid enables the conversion of normal-orthometric heights from the Taranaki 1970 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights.

TNK70-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Taranaki 1970 vertical datum (173.6° E to 176.4° E, 38.3° S to 41.1° S).
The conversion value is represented by the attribute “delta”, in metres.

This grid is a combination of New Zealand Quasigeoid 2016 NZGeoid2016 and the TNK70-NZVD2016 height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the TNK70-NZVD2016 grid models the difference between the Taranaki 1970 vertical datum and NZVD2016 using the LINZ GPS-levelling marks.

More information on converting heights between vertical datums can be found on the LINZ website.

Layer ID 53443
Data type Vector point
Feature count 28561
Services Vector Query API, Web Feature Service (WFS), Catalog Service (CS-W), data.govt.nz Atom Feed
Results 31 to 40 of 42